

ЭЛЕКТРОНАСОС СЕРИИ «Иртыш» типа (Р)ППс

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ НЗВ.0300.0600.00 РЭ

ВНИМАНИЕ:

Прежде чем пользоваться электронасосом серии «Иртыш» типа (Р)ППс (в дальнейшем — электронасос), внимательно ознакомьтесь с правилами монтажа, пуска, эксплуатации и ухода за электронасосом в настоящем руководстве по эксплуатации.

Перед вводом оборудования в эксплуатацию необходимо произвести шефмонтажные (ШМР) и пусконаладочные работы (ПНР). При выполнении ПНР следует руководствоваться требованиями нормативно-технической документации - ГОСТ Р 56203-2015 [1], СП 76.13330-2016 [2], проектом, эксплуатационной документацией предприятий-изготовителей, в том числе паспортом и руководством по эксплуатации.

ШМР и ПНР оборудования выполняются на договорной основе.

Рекомендуется производить ШМР и ПНР силами производителя оборудования или обратиться к специализированной монтажной организации.

Завод-изготовитель не несет юридической и материальной ответственности за последствия, которые могут возникнуть в результате невыполнения заказчиком (его подрядной монтажной организацией) требований технической документации, действующих норм и правил на монтаж, испытания и пуско-наладочные работы.

При этом гарантии завода-изготовителя при соответствующем обосновании могут быть сняты полностью или частично.

Подключение электронасоса к питающей сети и его эксплуатация должны производиться квалифицированным специалистом в соответствии с ПУЭ и «Правилами технической эксплуатации электроустановок потребителей» (ПТЭЭП).

ЗАПРЕЩАЕТСЯ:

- Подъем, перенос и опускание электронасоса за кабель!
- Использовать электронасос без шкафа управления электронасоса (при комплектации электронасоса шкафом управления)!
- Изменять электрическую схему шкафа управления (при комплектации электронасоса шкафом управления)!
- Изменять схему подключения электронасоса к шкафу управления (при комплектации электронасоса шкафом управления)!
 - Работа электронасоса «на сухую»!
- Работа электронасоса мощностью свыше 3 кВт в автоматическом режиме без устройств: плавного пуска, частотного преобразователя (для электронасоса, предназначенного под частотное регулирование).
- Работа электронасоса при закрытой напорной задвижке свыше <u>одной</u> минуты.
 - Подключение кабелей без наконечников!

^{1.} ГОСТ Р 56203-2014. Оборудование энергетическое тепло- и гидромеханическое. Шефмонтаж и Шефналадка. Общие требования. М.: Стандартинформ, 2015, 12с.

^{2.} СНиП 3.05.06-85. Свод правил. Электротехнические устройства. М.: Стандартинформ, 2017. 73с.

Перед пуском электронасоса проверить соответствие напряжения в сети напряжению электронасоса, указанному на табличке.

При транспортировании и хранении электронасоса серии «Иртыш» допускается устанавливать в горизонтальное положение. Приложенную к упаковке из гофрокартона стропу использовать только для транспортировки электронасосов.

В связи с постоянной работой по совершенствованию изделия, повышающей его надежность, в конструкцию могут быть внесены незначительные изменения, не отражённые в настоящем РЭ.

Оглавление

1. Описание и работа электронасоса	5
1.1. Назначение электронасоса	5
1.2. Основные технические данные	7
1.2.1. Показатели энергетической эффективности	7
1.2.2. Технические данные электродвигателя электронасоса	7
1.2.3. Рабочие характеристики электронасоса	7
1.3. Устройство и работа	9
2. Основные технические данные	20
2.1. Подготовка электронасоса к использованию	20
2.1.1. Меры безопасности при подготовке электронасоса к работе	20
2.1.2. Подготовка к монтажу	21
2.1.3. Порядок контроля работоспособности электронасоса	22
2.1.4. Монтаж	22
2.2. Пуск электронасоса	26
2.3. Меры безопасности при работе электронасоса	27
2.4. Останов электронасоса	27
3. Техническое обслуживание	27
3.1. Общие указания	27
3.2. Технический осмотр	28
3.3. Текущее обслуживание	29
3.4. Среднее техобслуживание	29
3.5. Главное техобслуживание	30
4. Текущий ремонт электронасоса	30
5. Транспортирование и хранение	35
6. Утилизация	37
Приложение 1 - Проверка электрических параметров погружного	
электронасоса	39
Приложение 2 – Библиотека нормативных документов	41

Руководство по эксплуатации (РЭ) является сопроводительной эксплуатационной документацией, предназначенной для ознакомления с конструкцией и техническими данными, а также содержит сведения, необходимые для правильной эксплуатации.

К монтажу и эксплуатации электронасоса должен допускаться только квалифицированный персонал, обладающий знанием и опытом по монтажу и обслуживанию насосного оборудования, ознакомленного с конструкцией электронасоса, нормативными документами, указанными в настоящем РЭ.

1. ОПИСАНИЕ И РАБОТА ЭЛЕКТРОНАСОСА

1.1 Назначение электронасоса

Электронасос серии «Иртыш» типа (Р)ППс является моноблочным агрегатом, предназначенным для перекачивания продуктов обогащения руд и глиноземного производства, песчаных и других абразивных гидросмесей температурой от 274 до 323К (от +1°C до 50°C) и водородным показателем рН 6,0...8,0; плотностью до 1300 кг/м³, с концентрацией твердых включений до 25%.

Условное обозначение электронасоса

Иртыш	П	П	c	40	/	200	198	•	К	1	20	1	M	2,2	/	2	Ex	Δ/Υ	1	0	1	6
1	2	3	4	5		6	7		8		9		10	11		12	13	14		15	16	17

- 1 Серия насосов Иртыш;
- 2 Тип электродвигателя:
 - Π погружной электродвигатель без принудительного охлаждения;
 - Р погружной электродвигатель с принудительным охлаждением.
- 3 Тип гидравлической части электронасоса:
 - П песковый.
- 4 Тип рабочего колеса:
 - с вихревое рабочее колесо.
- 5 Номинальный диаметр напорного патрубка;
- 6 Номинальный диаметр рабочего колеса;
- 7 Фактический диаметр рабочего колеса;
- 8 Конструктивное исполнение (может включать несколько):
 - К рабочее колесо из нержавеющей стали;
- T комплектация электронасоса специального назначения по ТУ заказчика;
 - Х вся проточная часть из нержавеющей стали;
 - Ч для совместной работы с частотным преобразователем;

Без обозначения - штатное исполнение;

от «01» до «99» - исполнение и/или комплектация изготавливаемые по специальному заказу;

от <001> до <999> - исполнение и/или комплектация изготавливаемые по специальному заказу.

9 - Длина кабеля:

по спец. заказу, м (например 20м), допуск на длину кабеля $\pm 5\%$; Без обозначения - стандартная длина кабеля 10 метров.

10 - Тип питающей сети:

М - монофазный 1Ф 220В;

А - 60Гц;

0,2 - трехфазный 220В;

0,66 - 660B;

6 - 6000B;

10 - 10000B;

Без обозначения – трехфазный 380В, 50Гц.

- 11 Номинальная мощность электродвигателя;
- 12 Число полюсов электродвигателя;
- 13 Исполнение электродвигателя:

РВ Ех - взрывозащищенного исполнения для рудничных условий;

Ех - взрывозащищенного исполнения;

Без обозначения – базовый электродвигатель.

14 - Тип подключения электродвигателя:

380/660 (220/380) — подключение «треугольник/звезда»;

Без обозначения – подключение «звезда».

- 15 Вариант монтажа электронасоса:
 - 0 мобильный погружной вертикальный;
- 1 стационарный погружной вертикальный (с захватом под опускное устройство);
 - 2 стационарный моноблочный горизонтальный;
 - 3 стационарный моноблочный вертикальный;
 - 5 стационарный в трубе.
- 16 Исполнение шкафа управления:
 - 0 без шкафа управления;
 - 1 ручного управления;
 - 2 автомат с одним поплавковым выключателем;
 - 3 автомат с двумя поплавковыми выключателями;
- 4 автомат климатического исполнения УХЛ1 с двумя поплавковыми выключателями.
- 17 Способ защиты двигателя:
 - 0 без защиты;
 - 1 термозащита;
 - 2 влагозащита;
 - 6 влаго-термозащита;
 - 7 влаго-термозащита, контроль температуры подшипников;
 - 8 влаго-термозащита, контроль вибрации;
- 9 влаго-термозащита, контроль температуры подшипников, контроль вибрации.

1.2 Основные технические данные

Рабочие характеристики, габаритные и присоединительные размеры электронасоса приведены в Паспорте.

Максимальная температура перекачиваемой среды - не более 50°C. Допускается кратковременная работа (не более 15 минут) при температуре 55°C с последующим перерывом в течение 45 минут.

Электронасос выполнен в климатическом исполнении УХЛ5* ГОСТ 15150-69 [3] (значение температуры воздуха при эксплуатации +1°С ...+ 40°С).

Максимальная глубина погружения электронасоса — 10м. Большие глубины погружения оговариваются в техническом задании при заказе.

Рекомендуемое количество пусков в час -10, максимальное количество пусков час -20.

1.2.1 Показатели энергетической эффективности

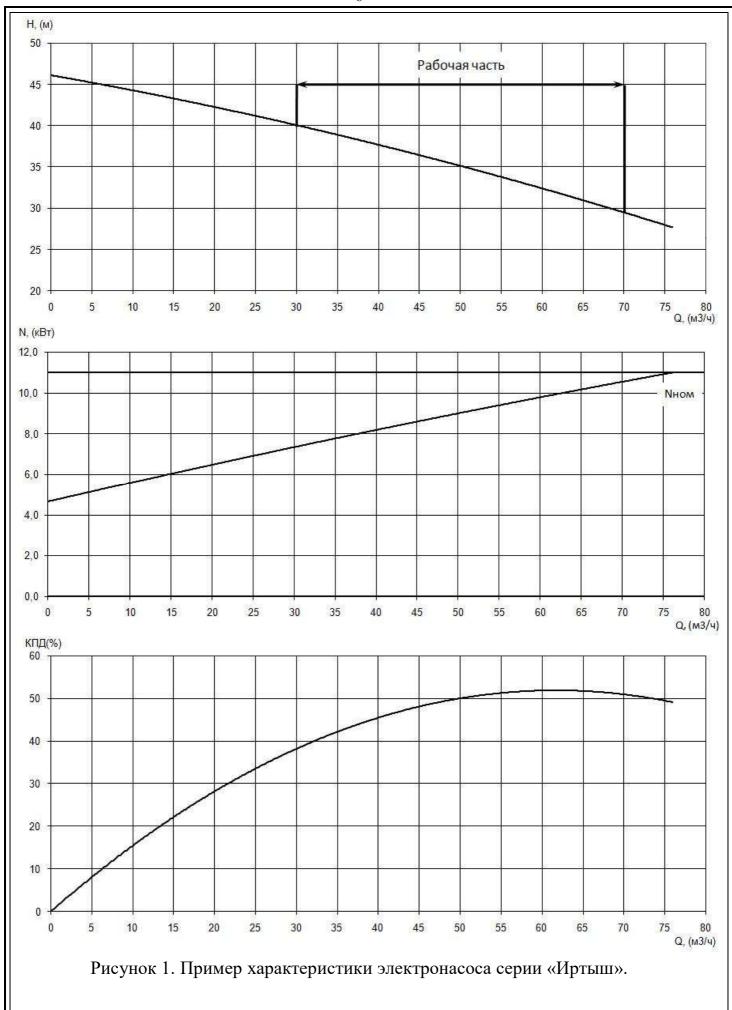
Центробежный электронасос относят к установкам, активно расходующим топливно-энергетические ресурсы (ТЭР).

Показатель энергетической эффективности – КПД при номинальной нагрузке, т.е. отношение мощности электронасоса к мощности электродвигателя.

1.2.2 Технические данные электродвигателя электронасоса

Тип – специального исполнения, герметизированный, встроенного типа, асинхронный, трёхфазный с короткозамкнутым ротором. Степень защиты IP68.

1.2.3 Рабочие характеристики электронасоса (рисунок 1)


ВНИМАНИЕ! Запрещается работа электронасоса на режимах, выходящих за пределы рабочей части характеристик (рисунок 1).

Примечания к подразделу 1.2:

- 1. Параметры даны при работе электронасоса на чистой воде, с частотой тока 50 Гц [4].
- 2. Допустимые отклонения гидравлических характеристик по ГОСТ 6134-2007(ИСО 9906:1999) (п.6.3 и приложение А) [4].

^{3.} ГОСТ 15150-69. Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды. М.: Стандартинформ, 2010. 71 с.

^{4.} ГОСТ 6134-2007. Насосы динамические. Методы испытаний. М.: Стандартинформ, 2008. 100 с.

1.3. Устройство и работа

Исходя из условий эксплуатации возможно изготовление различных видов электронасосов:

1. **Мобильный погружной**. В таком варианте электронасос является транспортируемым и предназначен для работы полностью или частично погруженным (с рубашкой охлаждения) в перекачиваемую среду.

Рисунок 2. Мобильный погружной электронасос.

2. Стационарный погружной (с захватом под опускное устройство). В таком варианте электронасос устанавливается на неподвижном напорном патрубке и работает полностью или частично погруженным (с рубашкой охлаждения) в перекачиваемую среду.

Рисунок 3. Стационарный погружной электронасос (с захватом под опускное устройство).

3. Стационарный моноблочный горизонтальный (с рубашкой охлаждения). В таком варианте электронасос устанавливается в сухом машинном отделении на раме и соединяется с всасывающим трубопроводом через патрубок. Сохраняет работоспособность при затоплении.

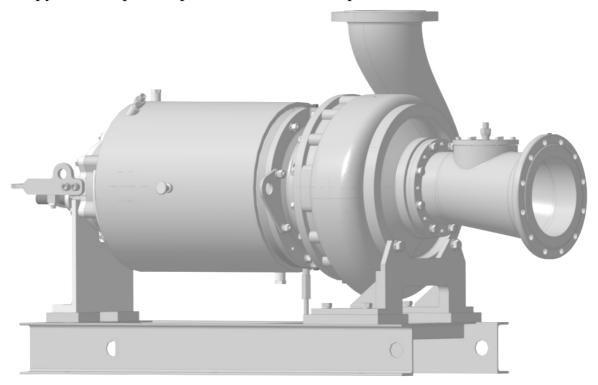


Рисунок 4. Стационарный моноблочный горизонтальный электронасос (с рубашкой охлаждения).

4. Стационарный моноблочный вертикальный (с рубашкой охлаждения). В таком варианте электронасос устанавливается на напорном патрубке стационарно в вертикальном положении в сухом машинном отделении. Сохраняет работоспособность при затоплении.

Рисунок 5. Стационарный моноблочный вертикальный электронасос (с рубашкой охлаждения)

5. Стационарный в трубе. В таком варианте электронасос является транспортируемым и предназначен для "мокрой установки" в трубе-шахте, канализационном колодце.

Рисунок 6. Стационарный в трубе.

Электронасос в зависимости от исполнения состоит из:

- электродвигателя;
- гидравлической части;
- рубашки охлаждения (в зависимости от исполнения);
- системы влагозащиты;
- системы термозащиты;
- шкафа управления (в зависимости от комплектации);
- поплавкового(-ых) выключателя(-лей) (в зависимости от комплектации);
- дополнительных устройств (в комплект поставки не входят).

Принцип действия центробежного насоса

При подаче напряжения на статор электродвигателя под действием электромагнитных сил ротор электродвигателя начинает вращаться, передавая крутящий момент рабочему колесу. Возникающая при его вращении центробежная сила приводит к вытеснению воды от центра колеса к его периферийным участкам. Там создается повышенное давление, которое начинает вытеснять жидкость в напорный трубопровод. Понижение давления в центре рабочего колеса вызывает поступление жидкости в насос через всасывающий патрубок. Таким образом, осуществляется работа по непрерывной подаче жидкости центробежным насосом.

<u>Электродвигатель</u> специального исполнения, герметизированный, встроенного типа, асинхронный, трёхфазный (монофазный) с короткозамкнутым ротором, оснащен встроенными в лобовой части обмоток

статора датчиками температуры, расположен вертикально над гидравлической частью и охлаждается перекачиваемой средой.

<u>Гидравлическая часть</u> состоит из центробежного вихревого рабочего колеса и корпуса спирального, закрытого корпусом «масляной» камеры.

<u>Рубашка охлаждения</u> служит для отвода тепла от корпуса электродвигателя. Рубашка охлаждения состоит из стального корпуса, закрепленного на корпусе электронасоса, трубопроводов подвода и отвода охлаждающей жидкости.

Возможно изготовление нескольких видов рубашек охлаждения:

а) Охлаждение перекачиваемой средой или технической водой от внешнего источника (рис 7, 8).

• Охлаждение перекачиваемой средой

Небольшое количество перекачиваемой среды через трубопроводы подвода и отвода охлаждающей жидкости циркулирует от корпуса камеры в полость рубашки охлаждения. Перекачиваемая среда отводит тепло от корпуса электродвигателя, а затем возвращается через корпус камеры в гидравлическую часть, где она смешивается с основным потоком перекачиваемой жидкости (рис.7). При использовании перекачиваемой жидкости в качестве охлаждающей в процессе работы электронасоса может возникнуть перегрев электродвигателя (отключение электронасоса датчиком температуры). Одной из причин является засорение рубашки охлаждения и трубопроводов для подвода и отвода охлаждающей жидкости. Рекомендуется производить очистку рубашки охлаждения и трубопроводов для подвода и отвода охлаждающей жидкости не реже 1 раза в месяц согласно п.4 настоящего РЭ.

• Охлаждение технической водой от внешнего источника

В случае подвода охлаждающей жидкости в рубашку охлаждения от внешнего источника технической воды необходимо отсоединить трубопроводы подвода и отвода охлаждающей жидкости от штуцеров рубашки охлаждения, заглушить их, а в рубашку охлаждения подвести трубопровод, который подключен к системе водоснабжения (рис. 7, 8).

б) Охлаждение с использованием теплоносителя. В этом случае охлаждение осуществляется с помощью дополнительного оборудования, устанавливаемого на напорном трубопроводе. В процессе работы происходит нагревание корпуса электродвигателя. Теплоноситель, циркулирующий в замкнутом охлаждающем контуре, отводит тепло. Проходя через охладитель, теплоноситель охлаждается за счет конвективного теплообмена с напорным трубопроводом и далее движется в рубашку охлаждения. Для обеспечения конвекции охладитель должен находиться выше верхнего уровня рубашки охлаждения относительно фундамента (рис 10).

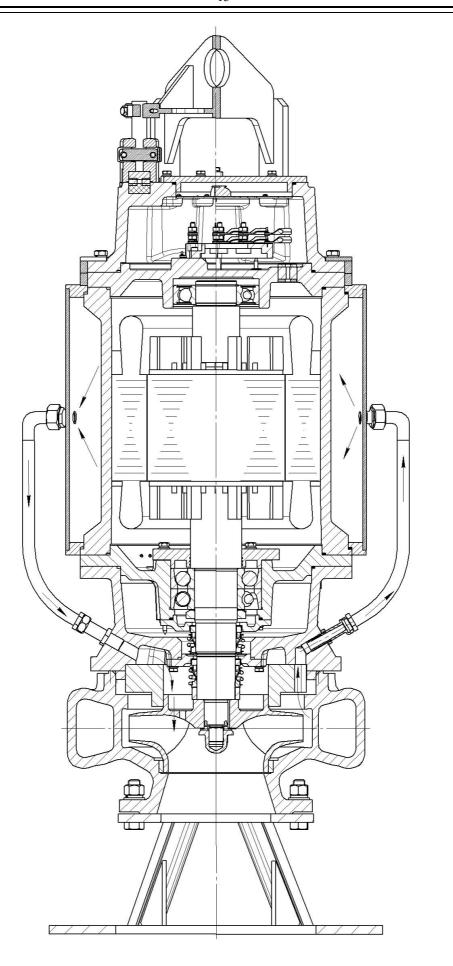


Рисунок 7. Принцип работы рубашки охлаждения электронасоса «Иртыш» (охлаждение перекачиваемой жидкостью).

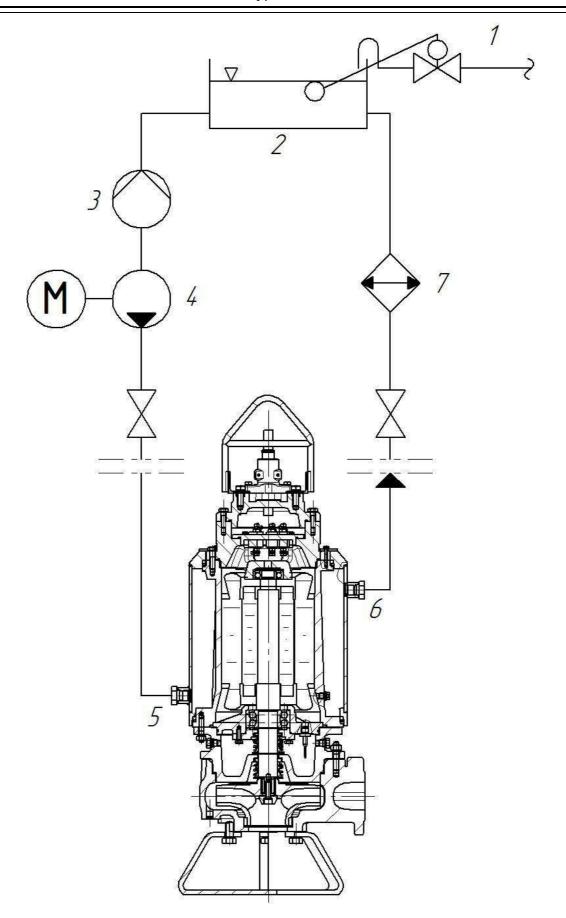


Рисунок 8. Рекомендуемая схема подачи охлаждающей жидкости для системы замкнутого типа (подключение от внешнего источника охлаждающей жидкости).

- 1. Источник охлаждающей жидкости; 2. Расширительный бак; 3. Расходомер;
- 4. Электронасос; 5. Штуцер для входа охлаждающей жидкости; 6. Штуцер для выхода охлаждающей жидкости; 7. Теплообменник.

К Рисунку 8

Источник охлаждающей жидкости должен быть отделен от контура охлаждения обратным клапаном.

Расширительный бак используется для пополнения охлаждающей системы при запуске, а затем выполняет роль расширительного резервуара (оборудован регулятором уровня положения жидкости).

Электронасос постоянно должен обеспечивать, по крайней мере, минимальный требуемый поток (с учетом потерь напора подводящей и отводящей линии).

Расходомер используется для контроля требуемого уровня потока охлаждающей жидкости во время работы электронасоса. Расходомер должен иметь электрический выход, который может быть подсоединен к цепи питания электронасоса таким образом, чтобы электронасос мог отключиться в случае сбоя в подводе охлаждающей жидкости.

Подводящая и отводящая линии должны быть оснащены клапанами так, чтобы электронасос мог быть изолирован от контура охлаждения во время технического обслуживания. Отводящая линия должна быть оборудована краном для слива охлаждающей жидкости из рубашки охлаждения перед проведением технического обслуживания.

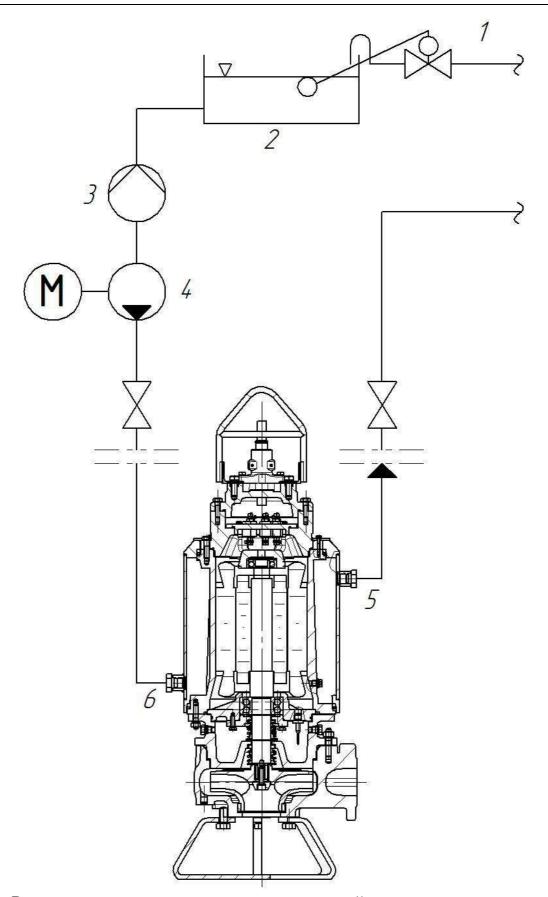


Рисунок 9. Рекомендуемая схема подачи охлаждающей жидкости для системы разомкнутого типа (подключение от внешнего источника охлаждающей жидкости).

- 1. Источник охлаждающей жидкости; 2. Расширительный бак; 3. Расходомер;
- 4. Электронасос; 5. Штуцер для выхода охлаждающей жидкости; 6. Штуцер для входа охлаждающей жидкости.

К Рисунку 9

Источник охлаждающей жидкости должен быть отделен от контура охлаждения обратным клапаном.

Расширительный бак используется для пополнения охлаждающей системы при запуске, а затем выполняет роль расширительного резервуара (оборудован регулятором уровня положения жидкости).

Расходомер используется для контроля требуемого уровня потока охлаждающей жидкости во время работы электронасоса. Расходомер должен иметь электрический выход, который может быть подсоединен к цепи питания электронасоса таким образом, чтобы электронасос мог отключиться в случае сбоя в подводе охлаждающей жидкости.

Подводящая и отводящая линии должны быть оснащены клапанами так, чтобы электронасос мог быть изолирован от контура охлаждения во время технического обслуживания. Отводящая линия должна быть оборудована краном для слива охлаждающей жидкости из рубашки охлаждения перед проведением технического обслуживания.

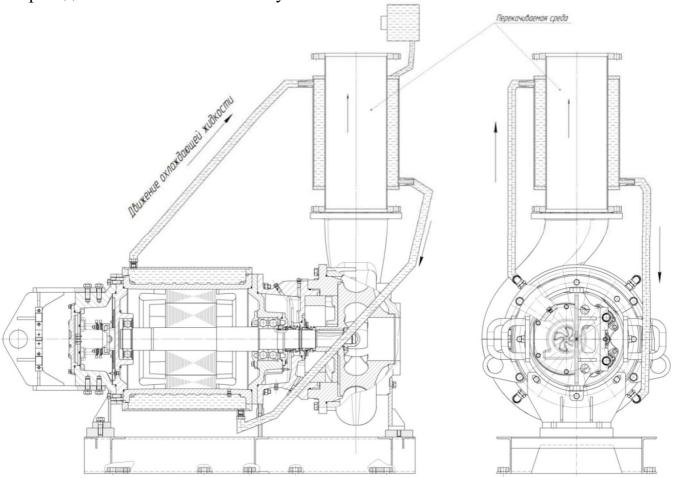


Рисунок 10. Принцип работы рубашки охлаждения электронасоса «Иртыш» (охлаждение теплоносителем).

Система влагозащиты двигателя состоит из:

- *комплекта уплотнений*, обеспечивающих двойную герметизацию по валу со стороны гидравлической части двумя торцовыми уплотнениями сильфонного типа или манжетой и торцовым уплотнением;

- *масляной камеры*, обеспечивающей дополнительную преграду на пути проникновения влаги с осуществлением смазки подвижных частей уплотнений и отвода части тепла от электродвигателя и подшипников;
- *датичка влаги*, обеспечивающего отключение электродвигателя в случае попадания влаги сверх нормы в масляную камеру электронасоса (только для электронасоса со способом защиты электродвигателя см. условное обозначение);
- комплекта неподвижных уплотнений, обеспечивающих герметичность стыков внутренних полостей электронасоса резиновыми кольцами круглого сечения и герметичность по наружной изоляции кабелей резиновыми уплотнениями специальной формы.

<u>Система термозащиты</u> двигателя состоит из:

- термодатчиков, встроенных в лобовую обмотку статора, обеспечивающих отключение электродвигателя в случае его перегрева.

<u>Шкаф управления</u> обеспечивает (в зависимости от комплектации):

- подключение электродвигателя электронасоса к питающей сети без дополнительной защитно-пусковой аппаратуры;
- информирование текущего состояния электронасоса («сеть», «работа», «авария» и т.д.);
- защиту силовых цепей электродвигателя и цепей управления от коротких замыканий и перегрузок по току;
 - отключение электродвигателя при перегреве;
- отключение электродвигателя при попадании влаги в масляную камеру электронасоса (только для электронасосов со способом защиты двигателя смотри условное обозначение);
- отключение электродвигателя при обрыве фаз (в исполнении шкафа с устройством контроля фаз);
 - запрет на включение при плохой изоляции обмоток двигателя;
- отключение электродвигателя при несоответствии напряжения питающей сети заданным нормам или при неправильном порядке фаз (в исполнении шкафа с устройством контроля фаз) и т.д.

<u>Поплавковый выключатель</u> служит для автоматического включения и выключения электронасоса на заданных уровнях перекачиваемой жидкости.

Дополнительные устройства:

1) Опускное устройство служит для механизации подсоединения и отсоединения электронасоса от трубопровода. Состоит из патрубка погружного поз. 1, захвата и кронштейна поз. 4 (рис. 11). Патрубок погружной имеет с одной стороны разъемное соединение (захват прикреплен к электронасосу), а с другой фланцевое соединение с напорной магистралью. На патрубок погружной крепятся две направляющие, имеющие необходимую длину (направляющие заказываются отдельно). Верхние части направляющих крепятся на поверхности с помощью кронштейна.

Патрубок погружной крепится ко дну емкости анкерными болтами. С одной стороны к нему подсоединяется напорная труба, с другой - электронасос, к напорному патрубку которого присоединен захват. На патрубок погружной крепятся вертикально две направляющие, которые в верхней части емкости фиксируются кронштейном. Электронасос на цепи с помощью захвата, сопряженного с направляющими, опускается и в нижней точке входит в

зацепление с фланцем патрубка погружного. Если электронасос нужно демонтировать, он на цепи с помощью подъемного механизма поднимается вверх по направляющим до тех пор, пока не выйдет из сопряжения с направляющими. Таким образом упрощается монтаж и демонтаж электронасоса.

2) Направляющие поз. 3 (рис. 11) служат для перемещения электронасоса в вертикальном направлении до сцепления захвата с патрубком погружным.

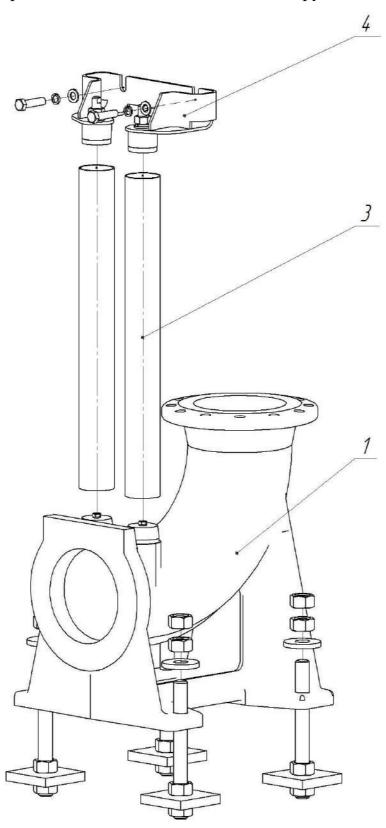
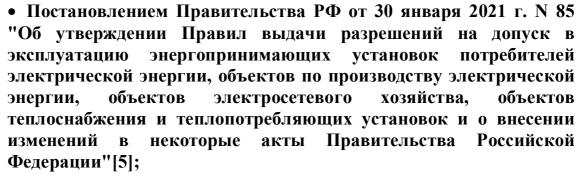


Рисунок 11. Опускное устройство электронасоса «Иртыш» 1. Патрубок погружной; 3. Направляющие; 4. Кронштейн.


2. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Подготовка электронасоса к использованию

При приемке электронасоса проверьте:

- 1. Комплектность поставки;
- 2. Наличие гарантийных пломб меток эмалью красного цвета в местах крепления корпусных деталей;
- 3. Отсутствие видимых механических повреждений на корпусе электронасоса.

ВНИМАНИЕ! При проведении пусконаладочных работ необходимо руководствоваться:

- Сводом Правил 76.13330.2016 "Электротехнические устройства"[1];
- ГОСТ Р 56203-2014 "Национальный стандарт Российской Федерации. Оборудование энергетическое тепло- и гидромеханическое. Шефмонтаж и шефналадка. Общие требования"[2].

2.1.1 Меры безопасности при подготовке электронасоса к работе

При погрузке, разгрузке и перемещении электронасоса должны соблюдаться требования ГОСТ 12.3.020-80 [6].

Электронасос следует перемещать только за рым - болты (ручку), проушины или грузовые цапфы. При транспортировке электронасоса в упаковке из гофрокартона использовать приложенную стропу.

При испытаниях и эксплуатации электронасоса должны быть учтены требования ГОСТ 31839-2012 [7]. Эксплуатация должна производиться в соответствии с «Правилами технической эксплуатации электроустановок

^{1.} СНиП 3.05.06-85.. Свод правил. Электротехнические устройства. М.: Стандартинформ, 2017. 73с.

^{2.} ГОСТ Р 56203-2014. Издания. Оборудование энергетическое тепло- и гидромеханическое. Шефмонтаж и Шефналадка. Общие требования. М.: Стандартинформ, 2015, 12с.

^{5.} Правительство Российской Федерации. Постановление от 30 января 2021 г. №85. Об утверждении правил выдачи разрешений на допуск в эксплуатацию энергопринимающих установок потребителей электрической энергии, объектов по производству электрической энергии, объектов электросетевого хозяйства, объектов теплоснабжения теплопотребляющих установок и о внесении изменений в некоторые акты Правительства Российской Федерации.: утв. постановлением Правительства Российской Федерации от 30 января 2021 г. №85: в ред. постановления Правительства Российской Федерации от 22.10.2021 №1813, от 30.11.2021 № 2115.

^{6.} ГОСТ 12.3.020-80. Система стандартов безопасности труда. Процессы перемещения грузов на предприятиях. Общие требования безопасности. М.: ИПК Издательство стандартов, 1980, 8с.

^{7.} ГОСТ 31839-2012. Насосы и агрегаты насосные для перекачки жидкостей. Общие требования безопасности. М.: Стандартинформ, 2013, 26с.

потребителями» (ПУЭ 7 издание) и «Правилами техники безопасности при эксплуатации электроустановок потребителем».

В соответствии с требованиями ГОСТ Р МЭК 60204-1-2007 [8] после монтажа электронасоса и установки всех электрических соединений (перед запуском электронасоса в работу) проверить цепь защиты на непрерывность, пропуская через неё ток от 0,2A до 10A, имеющего напряжение холостого хода 24B переменного или постоянного тока. Результаты испытаний должны быть соизмеримы с расчетными данными по сечениям, длине и материалу проводников в соответствующих цепях защитного заземления.

При монтаже и эксплуатации электронасоса сопротивление изоляции, измеренное при 500В постоянного тока между проводами силовой цепи и цепи защиты, не должно быть менее 1 МОм.

2.1.2 Подготовка к монтажу

ВНИМАНИЕ! Рекомендуется для исключения выхода из строя при запуске и увеличения срока службы оборудования произвести шеф - монтажные и пусконаладочные работы (ШМР и ПНР) специалистами завода-изготовителя.

Монтаж и наладку электронасоса производить в соответствии СНиП III- Γ .10.3-69 [9], СНиП 12-03-2001 [10], СНиП 12-04-2002 [11], и настоящим руководством по эксплуатации.

После доставки электронасоса на место установки необходимо освободить его от упаковки, убедиться в наличии заглушек на входном и выходном патрубках и сохранности гарантийных пломб, проверить наличие эксплуатационной документации. Проверить возможные транспортные повреждения, а также кабель на наличие видимых повреждений.

Расконсервировать электронасос. Снять заглушки с входа и выхода гидравлической части, удалить упаковку с концов кабеля.

ВНИМАНИЕ! Упаковка концов кабеля является транспортировочной и не обеспечивает «полную» герметичность от влаги.

Удалить консервацию с уплотнительных поверхностей фланцев электронасоса и протереть их ветошью, смоченной в керосине или уайтспирите.

Расконсервация проточной части электронасоса не производится, если консервирующий состав не оказывает отрицательного влияния на перекачиваемый продукт.

^{8.} ГОСТ Р МЭК 60204-1-2007. Безопасность машин. Электрооборудование машин и механизмов. М.: Стандартинформ, 2008, 93с.

^{9.} СНиП III-Г.10.3-69. Строительные нормы и правила. Часть III, раздел Г. М.: Госстрой СССР, 1969, 17с. 10.СНиП 12-03-2001. Безопасность труда в строительстве. Часть 1. Общие требования. М.: Госстрой России, 2001, 48с.

^{11.} СНиП 12-04-2002. Безопасность труда в строительстве. Часть 2. Строительное производство. М.: Госстрой России, 2002, 35с.

Проверить требуемое количество масла в масляной камере, для этого нужно придать электронасосу горизонтальное положение, вывернуть пробку слива масла поз.8, слить масло. Убедиться в необходимом количестве масла по объёму (смотри таблицу 4 стр. 34), залить масло в полость масляной камеры.

Проверить соответствие напряжения в сети напряжению, указанному на заводской табличке электронасоса.

Аккуратно произвести контрольное прокручивание рабочего колеса электронасоса от руки на 1-2 оборота. Вращение должно происходить без заеданий, заклиниваний, посторонних шумов, с незначительным усилием.

2.1.3 Порядок контроля работоспособности электронасоса

Приведите в рабочее состояние пусковую защитную аппаратуру подачей питания на силовые цепи и цепи управления.

Расположите электронасос таким образом, чтобы было обеспечено визуальное наблюдение за вращением рабочего колеса. Запустите электронасос на 2...3 секунды последовательным нажатием кнопок «Пуск» и «Стоп», и, внимательно наблюдая за вращением рабочего колеса, определить его направление. Рабочее колесо должно вращаться по направлению стрелки, установленной на корпусе спиральном.

Для изменения направления вращения вала электронасоса следует поменять местами две из трех жил питающего кабеля в шкафу управления (смотри паспорт на шкаф управления).

ВНИМАНИЕ! Неправильное направление вращения вала (против стрелки, установленной корпусе спиральном) приводит:

- к нерасчётным радиальным нагрузкам на рабочем колесе, которые вызывают изгибающий момент вала, под действием которого происходит разрушение сопрягаемых поверхностей рабочего колеса и корпуса спирального, и, в конечном итоге, к излому вала;
- к существенному снижению КПД электронасоса;
- к перегрузке электродвигателя и выходу электронасоса из строя.

2.1.4. Монтаж

ВНИМАНИЕ! Электронасос следует перемещать только за рым - болты или ручку.

Электронасос стационарного исполнения (смотри условное обозначения электронасоса) необходимо установить на заранее подготовленный фундамент. Площадка фундамента должна быть ровной и горизонтальной, бетон должен быть затвердевшим. Фундамент должен соответствовать требованиям СНиП 2.02.05-87 [12] и СП 26.13330.2012.

^{12.} СНиП 2.02.05-87. Фундаменты машин с динамическими нагрузками. М.: Госстрой СССР, 1988, 35с. СП 26.13330.2012. Фундаменты машин с динамическими нагрузками. М.: Минрегион России, 2011, 70с.

Всасывающий трубопровод должен быть герметичным и, по возможности, коротким, не иметь резких перегибов, колен большой кривизны, подъемов. При нахождении электронасоса выше уровня перекачиваемой жидкости на конце всасывающего трубопровода устанавливают обратный клапан для предотвращения запуска электронасоса «на сухую».

Напорный трубопровод должен присоединяться к электронасосу без напряжений. Категорически запрещается использовать электронасос в качестве места закрепления трубопровода. Температурные расширения трубопроводов следует компенсировать соответствующими устройствами, чтобы электронасос не подвергался недопустимым нагрузкам и моментам от трубопроводов. Напорный трубопровод необходимо закрепить, он не должен влиять на устойчивость электронасоса. Рекомендуется установка обратного клапана на напорном трубопроводе для предотвращения обратного потока, а также запорной арматуры в зависимости от типа установки и электронасоса. При этом должна быть обеспечена возможность беспрепятственного демонтажа электронасоса.

Диаметры трубопроводов быть должны не менее диаметров соответствующих патрубков электронасоса. При присоединении электронасосу трубопровода большего диаметра, чем диаметр патрубка электронасоса, между патрубком и трубопроводом устанавливается переходной конический патрубок с углом конусности не более 10° на напорном трубопроводе и не более 15° на всасывающем трубопроводе.

Потребитель должен определить силы и моменты, передаваемые от трубопровода на фланец электронасоса и опускного устройства (при наличии), и проверить, что они не превышают допустимые величины (рис.12, Таблица 1).

ВНИМАНИЕ! Превышение допустимых нагрузок на фланцы приведет к нарушению надежности эксплуатации!

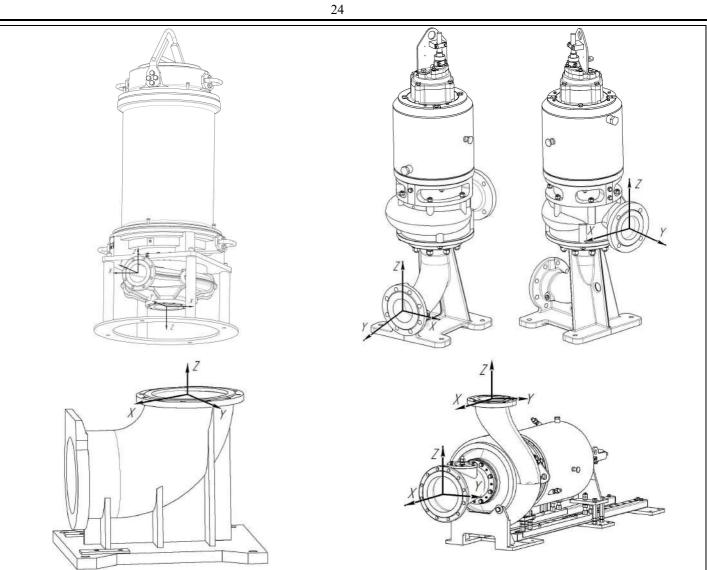


Рисунок 12. Допустимые силы и моменты, действующие на патрубки электронасоса.

Таблица 1 - Базовые значения сил и моментов для вертикальных и горизонтальных насосов

	1	оризон	Пальні	J171 1140	ОСОВ	1			
Тип насоса, патрубок	Диаметр		Сил	a, H			Мом	ент, Н∙м	[
тип насоса, патруоок	a) DN	Fy	Fz	Fx	$\sum F b$	My	Mz	Mx	$\sum M b$)
	25	700	850	750	1300	600	700	900	1300
	32	850	1050	900	1650	750	850	1100	1600
	40	1000	1250	1100	1950	900	1050	1300	1900
	50	1350	1650	1500	2600	1000	1150	1400	2050
	65	1700	2100	1850	3300	1100	1200	1500	2200
	80	2050	2500	2250	3950	1150	1300	1600	2350
Горизонтальный	100	2700	3350	3000	5250	1250	1450	1750	2600
насос	125	3200	3950	3550	6200	1500	1900	2100	3050
	150	4050	5000	4500	7850	1750	2050	2500	3650
Верхний патрубок,	200	5400	6700	6000	10450	2300	2650	3250	4800
расположенный	250	6750	8350	7450	13050	3150	3650	4450	6550
вдоль оси <u>z</u>	300	8050	10000	8950	15650	4300	4950	6050	8900
	350	9400	11650	10450	18250	5500	6350	7750	11400
	400	10750	13300	11950	20850	6900	7950	9700	14300
	450	12100	14950	13450	23450	8500	9800	11950	17600
	500	13450	16600	14950	26050	10250	11800	14450	21300
	550	14800	18250	16450	28650	12200	14050	17100	25300
	600	16150	19900	17950	31250	14400	16600	20200	29900

Горизонтальный насос 25 850 700 750 1300 600 700 900 1300 Боковой патрубок, расположенный вдоль оси у 40 1250 1000 1100 1950 900 1050 1300 1900 Вароль оси у 65 2100 1700 1850 3300 1100 1200 1500 2200 Вертикальный насос 65 2100 1700 1850 3300 1100 1200 1500 2200 Вертикальный насос 100 3500 2700 3000 5250 1250 1450 1750 2600 Вертикальный насос 250 8350 6700 5400 6000 1450 2300 2550 2500 2500 3650 Вертикальный насос 250 8350 6750 7450 13050 150 2500 2500 3650 Вертикальный насос 250 8350 6750 7450 1300 1600 1900 2105							Прод	олжен	ие табл	ицы 1
насос Боковой патрубок, расположенный вдоль оси у 32 1050 850 900 1650 750 850 1100 1600 Воковой патрубок, расположенный вдоль оси у 65 2100 1700 1850 2600 1000 1150 1200 2200 Вертикальный насос Боковой патрубок под прямым углом от вала, расположенный вдоль оси у 250 250 250 350 150 2600 1500 2200 Во сород под прямым углом от вала, расположенный вдоль оси у 160 3500 2700 300 5250 1250 1450 1500 200 350 350 150 150 1500 300 350 1500 1900 2100 3050 350 150 1500 4500 4500 7850 1750 2500 350 3650 4800 300 1000 3550 6200 1500 1900 2500 2500 3250 4800 3650 4800 4800 10450 3150 3650 4800 4800 10450 18250	Горизонтальный	25	850	700	750	1300	600	700	900	1300
расположенный вдоль оси у 65 1650 1350 1500 2600 1000 1150 1400 2050 2200 1000 1000 1000 1000 1500 1200 1500 2200 1000 10	*	32	1050	850	900	1650	750	850	1100	1600
расположенный вдоль оси у 65 1650 1350 1500 2600 1000 1150 1400 2050 2200 1000 1000 1000 1000 1500 1200 1500 2200 1000 10	Боковой патрубок,	40	1250	1000	1100	1950	900	1050	1300	1900
Вертикальный насос Концевой патрубок, расположенный вдоль оси <u>х</u> Концевой патрубок, расположенный насос Концевой патрубок, расположенный об татрубок, расположенный об татрубок об		50	1650	1350	1500	2600	1000	1150	1400	2050
Вертикальный насос Боковой патрубок под прямым углом от вала, расположенный вдоль оси у 1 100 1000 1000 1000 1000 1000 1000	вдоль оси <u>у</u>	65	2100	1700	1850	3300	1100	1200	1500	2200
Вертикальный насос Боковой патрубок под прямым углом от вала, расположенный вдоль оси у страновательный насос Концевой патрубок, расположенный вдоль оси у страновательный вдоль оси у страновательный насос Концевой патрубок, расположенный вдоль оси у страновательный вдоль оси у страновательный насос Концевой патрубок, расположенный насос Концевой патрубок, расположенный вдоль оси у страновательный насос Концевой патрубок, расположенный вдоль оси у страновательный насос Концевой патрубок, расположенный насос Концевой патрубок на техна патрубок на техна патрубок на техна патрубок на техна патруб на		80	2500	2050	2250	3950	1150	1300	1600	2350
Вертикальный насос Боковой патрубок под прямым углом от вала, расположенный вдоль оси у 150 5000 4050 4500 7850 1750 2050 2500 3650 1 боковой патрубок под прямым углом от вала, расположенный вдоль оси у 250 8350 6750 7450 13050 3150 3650 4450 6550 300 10000 8050 8950 15650 4300 4950 6050 8900 350 11650 9400 10450 18250 5500 6350 7750 11400 400 13300 10750 11950 20850 6900 7950 9700 14300 500 16600 13450 14950 20550 6900 7950 9700 14300 600 19900 16150 17950 31250 1400 16450 28650 12200 14050 17100 25300 70ризонтальный насос 40 1100 10011 1250 1950 900 1050 1300 2200		100	3500	2700	3000	5250	1250	1450	1750	2600
Бертикальный насос Боковой патрубок под прямым утлом от вала, расположенный вдоль оси у 200 6700 5400 6000 10450 2300 2650 3250 4800 10 д прямым утлом от вала, расположенный вдоль оси у 350 11650 9400 10450 18250 5500 6350 7750 11400 400 13300 10750 11950 20850 6900 7950 9700 14300 500 16600 13450 14950 20850 6900 7950 9700 14300 550 14950 12100 13450 2850 9800 11950 17600 550 16600 13450 14950 20550 10250 11800 14450 21300 600 19900 16150 17950 31250 14400 16600 2200 29900 100 300 850 1050 1650 750 850 1100 1600 100 300 250 2500 3950 115		125	3950	3200	3550	6200	1500	1900	2100	3050
Боковой патрубок под прямым углом от вала, расположенный вдоль оси у 250 8350 6750 7450 13050 3150 3650 4250 6550 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- v	150	5000	4050	4500	7850	1750	2050	2500	3650
Под прямым углом от вала, расположенный вдоль оси у 1650 1	Вертикальный насос	200	6700	5400	6000		2300	2650	3250	4800
Под прямым углом от вала, расположенный вдоль оси у 1650 1		250	8350	6750	7450	13050	3150	3650	4450	6550
вала, расположенный вдоль оси у 400 13300 10750 11950 20850 6900 7950 9700 14300 400 13300 10750 11950 20850 6900 7950 9700 14300 500 16600 13450 14950 23450 8500 9800 11950 17600 500 16600 13450 14950 26050 10250 11800 14450 21300 550 18250 14850 16450 28650 12200 14050 17100 25300 600 19900 16150 17950 31250 14400 16600 20200 29900 1050 1050 1050 1050 1050 1050 1050	* *	300	10000	8050	8950	15650	4300	4950	6050	8900
Вала, расположенный вдоль оси у 450 13300 10750 11950 20850 6900 7950 9700 14300 450 14950 12100 13450 23450 8500 9800 11950 17600 500 16600 13450 14950 26050 10250 11800 14450 21300 600 19900 16150 17950 31250 14400 16600 20200 29900 1600 19900 16150 17950 31250 14400 16600 20200 29900 1700 1700 1700 1700 1700 1700 1700								6350		11400
450	. •									
Бой вой вой вой вой вой вой вой вой вой в	вдоль оси <u>у</u>	450							11950	17600
Б5018250148001645028650122001405017100253006001990016150179503125014400166002020029900257507008501300600700900130032900850105016507508501100160040110010010125019509001050130019005015001350165026001000115014002050651850170021003300110012001500220080225020502500395011501300160023501003000270033505250125014501750260012535503200395062001500190021003050150450040505000785017502050250036502006000540067001045023002650325048002507450675083501305031503650445065503008950805010000156504300495060508900Горизонтальный насос45013450121001495023450850098001195017600Концевой патрубок, расположенный5001495013450166002605010250<			1							
Горизонтальный вдоль оси х6001990016150179503125014400166002020029900Концевой патрубок, расположенный насос2575070085013006007009001300150150015001650165075085011001600150150013501650260010001150140020501003000270033001100120015002200100300027003350525012501450175026001253550320039506200150019002100305015045004050500078501750205025003650200600054006700104502300265032504800250745067508350130503150365044506550300895080501000015650430049506050890015013450121001495023450850098001195017600Концевой патрубок, расположенный550149501345016600260501025011800144502130025001645014800182502865012200140501710025300										
Соризонтальный насос Неборизонтальный вдоль оси x 250 7450 800 1050 1650 150		600								29900
Горизонтальный насос329008501050165075085011001600Концевой патрубок, расположенный вдоль оси х100300270033001100120015002200Горизонтальный насос250250250039501150130016002350Концевой патрубок, расположенный вдоль оси х1003000270033505250125014501750260020060005400405050007850175020503650250745067508350130503150365048002507450675083501305031503650445065503008950805010000156504300495060508900Горизонтальный насос45013450121001495023450850098001195017600Концевой патрубок, расположенный5001495013450166002605010250118001445021300Концевой патрубок, расположенный5501645014800182502865012200140501710025300		25	750		850			700	900	1300
Концевой патрубок, расположенный насос 40 1100 100 ¹⁾ 1250 1950 900 1050 1300 1900 Концевой патрубок, расположенный насос 80 2250 2050 2500 3300 1100 1200 1500 2200 Концевой патрубок, расположенный насос 100 3000 2700 3350 5250 1250 1450 1750 2600 150 4500 4050 5000 7850 1500 1900 3050 150 4500 4050 5000 7850 1750 2050 3650 200 6000 5400 6700 10450 2300 2650 3250 4800 250 7450 6750 8350 13050 3150 3650 4450 6550 300 8950 8050 10000 15650 4300 4950 6050 8900 Горизонтальный насос 450 13450 12100 14950 23450 8500		32	900	850	1050	1650	750	850	1100	1600
Торизонтальный насос 65 1850 1700 2100 3300 1100 1200 1500 2200 Концевой патрубок, расположенный вдоль оси х 100 3000 2700 3350 5250 1250 1450 1750 2600 150 4500 4050 5000 7850 1750 2050 3650 200 6000 5400 6700 10450 2300 2650 3250 4800 250 7450 6750 8350 13050 3150 3650 4450 6550 300 8950 8050 10000 15650 4300 4950 6050 8900 Горизонтальный насос 450 13450 12100 14950 23450 8500 9800 11950 17600 Концевой патрубок, расположенный 500 14950 13450 16600 26050 10250 11800 14450 21300			1100				900		1300	
Торизонтальный насос 65 1850 1700 2100 3300 1100 1200 1500 2200 Концевой патрубок, расположенный вдоль оси х 100 3000 2700 3350 5250 1250 1450 1750 2600 150 4500 4050 5000 7850 1750 2050 3650 200 6000 5400 6700 10450 2300 2650 3250 4800 250 7450 6750 8350 13050 3150 3650 4450 6550 300 8950 8050 10000 15650 4300 4950 6050 8900 Горизонтальный насос 450 13450 12100 14950 23450 8500 9800 11950 17600 Концевой патрубок, расположенный 500 14950 13450 16600 26050 10250 11800 14450 21300		50	1500	1350	1650	2600	1000	1150	1400	2050
Насос8022502050250039501150130016002350Концевой патрубок, расположенный вдоль оси х125355032003950620015001900210030502006000540067001045023002650325048002507450675083501305031503650445065503008950805010000156504300495060508900Горизонтальный насос4501195010750133002085069007950970014300Концевой патрубок, расположенный50014950134501660026050102501180014450213005501645014800182502865012200140501710025300	-		1850	1700			1100	1200	1500	2200
Концевой патрубок, расположенный вдоль оси х 200 6000 5400 6700 10450 2300 2650 3250 4800 250 6000 350 6000 10450 2300 2650 3250 4800 6750 8350 10450 9400 11650 18250 5500 6350 7750 11400 10450 104	насос	80	2250					1300	1600	
125 3550 3200 3950 6200 1500 1900 2100 3050 1500	T.C. V									
150 4500 4050 5000 7850 1750 2050 2500 3650 200 6000 5400 6700 10450 2300 2650 3250 4800 250 7450 6750 8350 13050 3150 3650 4450 6550 300 8950 8050 10000 15650 4300 4950 6050 8900 350 10450 9400 11650 18250 5500 6350 7750 11400 11950 10750 13300 20850 6900 7950 9700 14300 450 13450 12100 14950 23450 8500 9800 11950 17600 14950 13450 14800 18250 28650 12200 14050 17100 25300 16450 14800 18250 28650 12200 14050 17100 25300 1005	= -									
ВДОЛЬ ОСИ X 200 6000 5400 6700 10450 2300 2650 3250 4800 250 7450 6750 8350 13050 3150 3650 4450 6550 300 8950 8050 10000 15650 4300 4950 6050 8900 350 10450 9400 11650 18250 5500 6350 7750 11400 Горизонтальный насос 450 13450 12100 14950 23450 8500 9800 11950 17600 Концевой патрубок, расположенный 500 14950 13450 16600 26050 10250 11800 14450 21300	_		-							
250 7450 6750 8350 13050 3150 3650 4450 6550 300 8950 8050 10000 15650 4300 4950 6050 8900 350 10450 9400 11650 18250 5500 6350 7750 11400 Горизонтальный насос 450 13450 12100 14950 23450 8500 9800 11950 17600 Концевой патрубок, расположенный 550 14950 13450 16600 26050 10250 11800 14450 21300	вдоль оси <u>х</u>									
300 8950 8050 10000 15650 4300 4950 6050 8900 350 10450 9400 11650 18250 5500 6350 7750 11400 Горизонтальный насос 450 11950 10750 13300 20850 6900 7950 9700 14300 Концевой патрубок, расположенный 500 14950 13450 16600 26050 10250 11800 14450 21300 550 16450 14800 18250 28650 12200 14050 17100 25300										
Торизонтальный насос 450 13450 12100 14950 1250 5500 6350 7750 11400 Концевой патрубок, расположенный 550 13450 12100 14950 23450 8500 9800 11950 17600 Концевой патрубок, расположенный 550 14950 13450 16600 26050 10250 11800 14450 21300										
Горизонтальный насос 400 11950 10750 13300 20850 6900 7950 9700 14300 Концевой патрубок, расположенный 500 14950 13450 16600 26050 10250 11800 14450 21300										
насос 450 13450 12100 14950 23450 8500 9800 11950 17600 Концевой патрубок, расположенный 500 14950 13450 16600 26050 10250 11800 14450 21300 550 16450 14800 18250 28650 12200 14050 17100 25300	Горизонтальный									
Концевой патрубок, расположенный 500 14950 13450 16600 26050 10250 11800 14450 21300 550 16450 14800 18250 28650 12200 14050 17100 25300	-		1							
расположенный 550 16450 14800 18250 28650 12200 14050 17100 25300	l-		1							
·			1							
вдоль оси <u>х</u> 600 17950 16150 19900 31250 14400 16600 20200 29900	вдоль оси <u>х</u>	600	17950			31250	14400	16600	20200	29900

вдоль оси <u>х</u> | 600 | 17950 | 16150 | 19900 | 31250 | 14400 | 16600 | 20200 | 29900 а) Для значений DN, превышающих 600, или для фланцев максимального значения DN согласно таблицам В.1 и В.2 (ГОСТ Р 54805-2011(ИСО 5199:2002′) [13]) значения величин сил и моментов должны быть согласованы между потребителем и изготовителем.

Для всех болтовых соединений необходимо соблюдать ориентировочные моменты затяжки и усилий предварительной затяжки для метрических резьбовых изделий из нержавеющей стали A2 (см. таблицу 2).

b) ΣF , ΣM - векторные суммы сил и моментов.

¹⁾ Текст документа соответствует оригиналу. – Примечание изготовителя базы данных.

 $^{13.\ \}Gamma$ ОСТ Р $54805-2011.\$ Насосы центробежные. Технические требования. КЛАСС II М.: Стандартинформ, $2012,\ 48c.$

Таблица 2 - Моменты затяжки	резьбовых	соединений

Danz 6 a	Класс прочности	70
Резьба	Усилие предварительной затяжки, Н	Момент затяжки, Нм
M 5	3.000	3,5
M 6	6.200	6
M 8	12.200	16
M 10	16.300	32
M 12	24.200	56
M 16	45.000	135
M 20	71.000	280
M 24	105.000	455
M 30	191.000	1.050

2.2. Пуск электронасоса

ВНИМАНИЕ! Категорически запрещается нахождение людей в резервуаре во время работы электронасоса.

Произведите подключение к электросети согласно маркировке на концах кабелей в соответствии с приведенными монтажными схемами (согласно паспорта на шкаф управления).

ВНИМАНИЕ! Шкаф управления и электронасос должны быть надежно заземлены. Отсутствие надежного заземления приведет к аварийному отключению электронасоса.

Запуск электронасоса в ручном режиме мощностью более 3 кВт без устройства плавного пуска необходимо производить следующим образом:

- откройте задвижку на нагнетании и заполните гидравлическую полость электронасоса рабочей жидкостью;
 - закройте задвижку на нагнетании;
- нажмите кнопку "Пуск", запустится двигатель, загорится светодиод "Работа" на дверце шкафа управления;
- после создания электронасосом напора постепенно откройте задвижку на нагнетании, установив заданный режим работы.

ЗАПРЕЩАЕТСЯ ПРОИЗВОДИТЬ ЗАПУСК ЭЛЕКТРОНАСОСА ПРИ ПОЛНОСТЬЮ ОТКРЫТОЙ ЗАДВИЖКЕ НА НАПОРНОМ ТРУБОПРОВОДЕ.

ВНИМАНИЕ! Если возникает опасность того, что электронасос может работать на закрытую задвижку свыше <u>одной</u> минуты, необходимо предусмотреть байпас (обводную линию), чтобы обеспечить минимальную, но не менее 10 % от максимального расхода, циркуляцию жидкости.

При аварийном отключении устройства следует определить причину отключения согласно паспорта на шкаф управления и принять решение о возможности дальнейшей эксплуатации электронасоса.

ВНИМАНИЕ! При работе электронасоса (мощностью свыше 3кВт) в автоматическом режиме необходимо обеспечить условия для плавного пуска и останова электродвигателя насоса. Рекомендуется применение устройств плавного пуска (УПП) или частотно-регулируемого привода (ЧРП), или других устройств.

2.3. Меры безопасности при работе электронасоса

Шкаф управления должен быть защищен от попадания влаги.

Корпус шкафа управления должен быть надежно заземлен. ЗАПРЕЩЕНО поднимать и переносить работающие электронасос и шкаф управления.

При выполнении любых ремонтных работ с электронасосом серии «Иртыш» и шкафом управления предварительно отключить шкаф управления от питающей сети.

2.4. Останов электронасоса

- 1) Переведите переключатель «Ручное»/«Автомат» в положение "Ручное";
- 2) Останов электронасоса с мощностью электродвигателя более 3 кВт без устройства плавного пуска необходимо производить в ручном режиме следующим образом:
 - плавно закройте задвижку на напорном трубопроводе;
- нажмите кнопку «Стоп», погаснет светодиод «Работа», на дверце шкафа управления.
- 3) Переведите рычаг автоматического выключателя в нижнее положение, при этом погаснут все светодиоды на шкафу управления.

3. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

3.1 Общие указания

Регулярные проверки и планово-предупредительное техобслуживание гарантируют более надёжную работу электронасоса и шкафа управления.

При замене масла в электронасосе, как в процессе эксплуатации, так и при техническом обслуживании, необходимо вывернуть пробки слива и контроля уровня масла из корпуса камеры, слить масло. Залить требуемое количество масла согласно данных паспорта или таблицы 4 стр. 34.

Рекомендуется производить техническое обслуживание на заводеизготовителе или в сервисном центре. Адреса приведены на стр. 38 настоящего РЭ.

Указанные ресурсы, сроки службы действительны при соблюдении потребителем требований паспорта и руководства по эксплуатации.

Таблица 3 - Показатели надежности электронасоса при эксплуатации в рабочем интервале характеристики

Наименование показателя	Значение
Паименование показателя	показателя
Средняя наработка на отказ, ч, не менее	7000
Средний ресурс до главного техобслуживания, ч, не менее	20000
Срок службы, лет, не менее	20
Среднее время восстановления, ч, не более	8
Срок хранения (в законсервированном и упакованном	
состоянии), лет	3

Примечания

- 1. Показатели надежности агрегата уточняются по сведениям с мест эксплуатации.
- 2. Критерием отказа является нарушение нормального функционирования электронасоса.
- 3. Срок сохраняемости до ввода в эксплуатацию должен соответствовать срокам раздела «Транспортирование и хранение»

Межремонтные периоды для электронасосов «Иртыш»:

Технический осмотр - 620 часов (но не реже 1 раза в месяц);

Текущее техобслуживание – 3330 часов (но не реже 1 раза в год);

Среднее техобслуживание -6660 часов (но не реже 1 раза в 2 года);

Главное техобслуживание — 20000 часов (но не реже 1 раза в 6 лет);

По истечении назначенного ресурса (срока хранения, срока службы) электронасос изымается из эксплуатации и принимается решение о направлении его в ремонт, об утилизации, о проверке или об установлении нового назначенного ресурса (срока хранения, срока службы).

Основное содержание работ по видам ремонта погружных электронасосов «Иртыш».

Ежедневный технический осмотр: мониторинг параметров электронасосов (давление на входе в электронасос, давление на выходе из электронасоса, расход, сила тока, напряжение, уровень жидкости и т.д.)

3.2 Технический осмотр:

- 1. Проверка электрических параметров электродвигателя, датчиков электронасоса (смотри Приложение);
- 2. Проверка направления вращения, надежность посадки и крепления рабочего колеса;
- 3. Проверка целостности корпуса спирального, без разборки электронасоса;

- 4. Проверка целостности резиновой оболочки кабеля, проверка изоляции;
- 5. Проверка крепления электронасоса к раме (к фундаменту) и рамы к фундаменту (для электронасосов горизонтального исполнения), захвата к корпусу спиральному и направляющих (для электронасосов с опускным устройством);
- 6. Проверка количества масла в электронасосе согласно паспортным данным.

3.3 Текущее техобслуживание:

- 1. Состав работ технического осмотра;
- 2. Проверка уплотнительного зазора между рабочим колесом и корпусом спиральным*, при необходимости восстановление/замена;
- 3. Оценка внешнего вида на предмет повреждений рабочего колеса и корпуса спирального, проверка размеров посадочных мест*, при необходимости восстановление/замена;
- 4. Проверка остаточного дисбаланса рабочего колеса, при необходимости динамическая балансировка.

3.4 Среднее техобслуживание:

- 1. Состав работ текущего техобслуживания;
- 2. Оценка состояния резьбовых соединений корпусных деталей;
- 3. Притирка торцового уплотнения, при необходимости замена торцового уплотнения;
- 4. Разборка и оценка состояния корпусных деталей изделия, при необходимости восстановление;
- 5. Замена уплотнительных резиновых колец по стыкам корпусных деталей электронасоса;
- 6. Проверка геометрических размеров посадочных мест под подшипники в корпусных деталях*, при необходимости восстановление;
- 7. Оценка состояния подшипников качения, при необходимости замена;
- 8. Замена смазки в подшипниках (используемая смазка Металюб-СС). При полной замене допускается применять температуростойкую смазку (не менее +140);
 - 9. Замена трансформаторного масла;
 - 10. Проверка ротора на биение и его динамическая балансировка;
- 11. Осмотр, проверка геометрических размеров и, при необходимости, восстановление шпоночных соединений и резьб вала;
- 12. Осмотр, проверка геометрических размеров соединения вала и рабочего колеса*, при необходимости восстановление/замена;
 - 13. Испытания на герметичность всех стыков изделия, включая кабель;

та для уточнения информации от завода-изготовителя, требуется указать данные с таблички установленной на насосном агрегате.

 $^{^*}$ для уточнения информации от завода-изготовителя, требуется указать данные с таблички установленной на насосном агрегате.

14. Обкатка и опробование электронасоса в работе.

3.5 Главное техобслуживание:

- 1. Состав работ среднего техобслуживания;
- 2. Замена подшипников качения, торцовых уплотнений;
- 3. Калибровка резьбовых соединений, при необходимостивосстановление мест, поврежденных коррозией;
 - 4. Обкатка и испытание электронасоса с проверкой паспортных данных.

Таблица 4 – Гарантийная наработка быстроизнашивающихся деталей

Наименование перекачиваемой среды	Примерная наработка, ч
Глинисто – песчаные породы	2000
Крупнозернистые пески	1800
Песчано-гравийные породы	1500
Хвосты руд цветных металлов (кварцевые, пиритные, цинковые)	1500
Хвосты руд черных металлов и зольные пульпы	1300
Гравий и дробленые породы, золошлаковые и шлаковые пульпы	960

Таблица 5 – Спецификация быстроизнашивающихся деталей

Наименование	Марка материала	Масса, кг
Колесо рабочее	Резина	2,2
Диск футеровочный	ТСЗИПА	0,7
Корпус спиральный	Износостойкий чугун ИЧХ28Н2	18

4. ТЕКУЩИЙ РЕМОНТ ЭЛЕКТРОНАСОСА

<u>В течение срока гарантийного обслуживания в процессе</u> эксплуатации электронасоса следует:

Производить проверку состояния масла в корпусе камеры. Наличие воды в масле показывает была ли течь.

Причины появления воды в корпусе камеры:

а) начальная обкатка торцового уплотнения:

Торцовое уплотнение является динамическим уплотнением, которое по физическим и техническим причинам **не может быть полностью герметичным**. Поэтому наличие воды в масле может быть обнаружено и при исправном торцовом уплотнении.

Как показывает практический опыт, **при вводе** торцового уплотнения в составе насоса **в эксплуатацию повышенная утечка из уплотнения**, происходящая во время начальной обкатки и притирки поверхностей трения, при более длительной работе **уменьшается** и **приходит в норму**.

- б) недостаточно затянутая пробка для слива/залива масла, расположенная на корпусе камеры;
- в) повреждено кольцо резиновое, установленное на пробке для слива/залива масла, или повреждена его уплотнительная поверхность в корпусе камеры;
 - г) повреждение или повышенный износ торцового уплотнения.

При срабатывании датчика влажности необходимо:

- слить масло из масляной камеры, проверить наличие воды в масле;
- прочистить и просушить (обдувом воздуха) полость масляной камеры;
- залить чистое трансформаторное масло ГОСТ 982-80 [16] (или по иному руководящему документу на изготовление трансформаторного масла) объемом, указанным в паспорте, и запустить насос в дальнейшую эксплуатацию.

ВНИМАНИЕ! Если имеется утечка в торцовом уплотнении, то в масляной камере может быть избыточное давление. Необходимо держать ветошь над пробкой корпуса камеры для предотвращения брызг при откручивании пробки.

Если после повторных срабатываний датчика влажности (период срабатывания ≈ 250 часов) проверка воды в масле показала:

- наличие воды в масле необходимо заменить* торцовое уплотнение (Т.У), повторить перечисленные выше действия и снова запустить электронасос в эксплуатацию;
- отсутствие воды в масле необходимо электронасос отправить на заводизготовитель для диагностики и решения о дельнейшей эксплуатации.

*Примечание: во время гарантийного периода замена торцового уплотнения производится с согласия завода-изготовителя и после получения дополнительных инструкций.

ЗАПРЕЩАЕТСЯ ПОЛЬЗОВАТЬСЯ ПАЯЛЬНОЙ ЛАМПОЙ для оттаивания льда в электронасосе — этим можно повредить резинотехнические изделия в электронасосе.

В течение гарантийного и послегарантийного сроков обслуживания следует:

Производить очистку рубашки охлаждения

Для очистки рубашки охлаждения и трубопроводов для подвода и отвода охлаждающей жидкости (в случае охлаждения перекачиваемой жидкостью) следует произвести частичную разборку в следующей последовательности:

- а) Отключить электронасос от питающей сети;
- б) Закрыть задвижки на входе и выходе электронасоса;
- в) Отсоединить трубопроводы подвода и отвода охлаждающей жидкости;
 - г) Слить охлаждающую жидкость из полости рубашки охлаждения;

^{16.} ГОСТ 982-80. Масла трансформаторные. Технические условия. М.: Стандартинформ, 2011, 6с.

- д) Отвернуть метизы крепления крышки опоры подшипника, которыми прижаты съёмные полукольца;
- е) Снять полукольца, затем рубашку охлаждения (используя для этого цапфы на рубашке охлаждения), не повреждая при этом встроенный кабель;
- ж) Очистить полость рубашки охлаждения и трубопроводы подвода и отвода охлаждающей жидкости от осадков охлаждающей жидкости;
- з) Проверить кондиционность уплотнительных колец рубашки охлаждения и при необходимости их заменить. При последующей установке рубашки охлаждения рекомендуется посадочные места и резиновые кольца смазать консистентной смазкой (Литол, Солидол) для облегчения последующего снятия рубашки охлаждения.

Сборку производить в порядке, обратном разборке.

Очистка проточной части электронасоса

- а) Отключить электронасос от питающей сети;
- б) Снять корпус спиральный;
- в) Снять рабочее колесо;
- г) Очистить корпус спиральный и рабочее колесо;
- д) Сборку производить в порядке, обратном разборке.

<u>После истечения срока гарантийного обслуживания производятся следующие виды работ:</u>

Замена рабочего колеса

Для замены износившегося рабочего колеса следует произвести частичную разборку в следующей последовательности:

- 1) Установить электронасос на опорную подставку, с упором в верхнюю часть насоса, не зажимая кабель, вертикально корпусом спиральным вверх.
- 2) Отвернуть метизы крепления корпуса спирального с фланцем, снять корпус спиральный;
- 3) Ослабить метизы крепления корпуса камеры к фланцу, выставить размер 10 мм между торцами фланца и корпусом камеры при помощи винтов;
 - 4) Отвернуть метизы крепления лючка камеры к корпусу камеры;
- 5) Установить ключ рожковый с зевом S=24 в полость лючка корпуса камеры, убедится, что ключ застопорил вал;
- 6) Отвернуть колесо рабочее с вала электродвигателя (соединительная резьба левая откручивать колесо по часовой стрелки если смотреть со стороны корпуса спирального);
 - 7) Сборку производить в порядке обратном разборке.

Замена манжеты и втулки защитной

- 1. Выполнить рекомендации раздела «замена рабочего колеса» п.№1-6;
- 2. Снять диск футировочный с фланца;
- 3. Снять прокладку ПОН;
- 4. Отвернуть метизы крепления крышки камеры к корпусу камеры;

- 5. Снять крышку камеры с манжетами;
- 6. При явном износе поверхности снять втулку защитную заменить на новую (чертеж Втулки защитной смотреть в Паспорте);
 - 7. Сборку производить в порядке обратном разборке.

Замена износившихся нижнего и верхнего торцовых уплотнений

Рекомендуется замену торцовых уплотнений производить на заводеизготовителе или в сервисном центре с проведением полного объёма работ по испытаниям изделия на герметичность.

Для замены износившихся нижнего и верхнего торцовых уплотнений (манжеты) следует произвести частичную разборку в следующей последовательности:

Для нижнего торцового уплотнения

- 1. Установить электронасос горизонтально на твёрдую поверхность, либо горизонтально на весу, так чтобы одна из пробок корпуса масляной камеры была в нижнем положении, отвернуть пробку, слить масло.
- 2. Установить электронасос на опорную подставку, с упором в крышку верхнюю, вертикально корпусом спиральным вверх.
- 3. Для замены торцового уплотнения следует произвести частичную разборку в следующей последовательности:

Выполнить рекомендации раздела «замена рабочего колеса» п.№2-6, раздела «замена манжеты и втулки защитной». п.п. №2-6;

- 4. Отвернуть метизы крепления фланца к корпусу камеры;
- 5. Снять фланец;
- 6. Отвернуть метизы крепления корпуса камеры к корпусу электродвигателя;
- 7. Снять корпус камеры, при необходимости использовать направляющие шпильки, совместно с нижней неподвижной частью торцового уплотнения;
- 8. Отвернуть метизы крепления нижней неподвижной части торцового уплотнения к корпусу камеры;
- 9. Демонтировать подвижную часть торцового уплотнения, при необходимости использовать съёмник;
 - 10. Выкрутить датчик влажности, отсоединить его от проводов.
 - 11. Извлечь ротор вместе со стаканом подшипника.
- 12. Снять стопорное кольцо, демонтировать стакан подшипника, совместно с верхней неподвижной частью торцового уплотнения.
- 13. Извлечь неподвижную часть торцового уплотнения из стакана подшипника.
- 14. Осмотреть полость корпуса электродвигателя на присутствие в нём влаги;
- 15. При присутствии влаги в корпусе электродвигателя протереть ветошью и высушить до полного удаления влаги;
- 16. Убедиться в износе пар трения и сильфонов торцового уплотнения и при необходимости заменить;

17. При сборке тщательно очистить посадочные места под неподвижные узлы и вал от твердого налета продукта, очистку производить «до металла», но избегать царапин; при установке допускаются только незначительные осевые усилия, избегайте перекосов.

Установка неподвижного узла торцового уплотнения:

- 1) Смочить посадочное место и Γ (O) образную манжету неподвижной части торцового уплотнения мыльной водой;
- 2) При установке узла в посадочное место необходимо пользоваться оправкой с мягкой накладкой для обеспечения равномерности усилия и исключения возможности повреждения поверхности пары трения. Перекос неподвижной части торцового уплотнения и местное выдавливание Γ (O) образной манжеты не допускаются;
- 3) Поверхность трения не смазывать, очистить её от грязи, а непосредственно перед установкой протереть безворсовой тканью, слегка смоченной спиртом.

Установка подвижного узла торцового уплотнения:

- 1) Нанести масло трансформаторное на уплотнительную поверхность подвижной части торцового уплотнения. Наличие посторонних частиц в масле и на уплотнительной поверхности подвижной части торцового уплотнения после нанесения масла не допускается. Аккуратно, не повреждая сильфона, через оправку установить подвижное торцовое уплотнение на вал, предварительно смазав сильфон маслом трансформаторным;
 - 2) Дальнейшую сборку производить в порядке, обратном разборке;
- 3) Проверить правильность сборки для этого необходимо провернуть вал собранного электронасоса от руки. Вал должен проворачиваться с некоторым усилием, но без заеданий.

Таблица 6 - Перечень критических отказов в связи с ошибочными действиями персонала

Перечень критических отказов	Возможные ошибочные действия персонала, приведшие к аварии	Действия персонала в случае аварии
Останов насоса по причине попадания воды в корпус электродвигателя;	1) Механическое воздействие на корпус электронасоса (удар, падение); 2) Чрезмерное усилие затяжки болтов, повлекшее разрушение корпусных деталей; 3) Использование электронасоса при отключенных цепях управления.	Выполнить останов электронасоса - отправить в ремонт

	Про	одолжение таблицы 6
Останов насоса по причине попадания воды в корпус масляной камеры;	Несоблюдение рекомендаций по монтажу насоса (раздел 2. п.2.1.2), а также работа «на сухую» (как следствие – выход из строя торцового уплотнения).	Выполнить останов электронасоса - отправить в ремонт
Перегрев двигателя электронасоса	Отсутствие контроля за уровнем откачиваемой среды.	Выполнить останов электронасоса - отправить в ремонт
Облом конца вала с рабочим колесом	1) Неправильное направление вращения вала (неправильное подключение электронасоса в сеть - перепутаны фазы); 2) Работа электронасоса за пределами рабочей части характеристики.	Выполнить останов электронасоса - отправить в ремонт

5. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

Электронасос транспортируется любым видом транспорта с соблюдением необходимых мер безопасности и правил перевозок грузов для каждого вида транспорта.

Электронасос при транспортировании рекомендуется устанавливать так, чтобы ось насоса по длине вала была перпендикулярна направлению движения транспорта.

Электронасос следует перемещать только за предназначенные для строповки элементы (рым – болты, ручку, цапфы грузовые, проушины). При транспортировании электронасоса в упаковке из гофрокартона использовать приложенную стропу.

Условия транспортирования электронасосов в части воздействия климатических факторов — 4Ж2 ГОСТ 15150-69 [3], в части воздействия механических факторов — с ГОСТ 23216-78 $^{'}$ [16].

Электронасос при транспортировании рекомендуется устанавливать так, чтобы ось электронасоса по длине вала была перпендикулярна направлению движения транспорта.

Длительность транспортирования электронасоса при низких температурах (-30°С \div -40°С) - не более 30 суток, ниже -40°С — не более 10 суток. Перед вводом в эксплуатацию обязательно выдержать в теплом помещении (условия хранения 1Л по ГОСТ 15150-69 [3]), для установления положительной температуры всех узлов электронасоса.

16. ГОСТ 23216-78. Изделия электротехнические. Хранение, транспортирование, временная противокоррозионная защита, упаковка. Общие требования и методы испытаний. М.: Стандартинформ, 2008, 45с.

^{3.} ГОСТ 15150-69. Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды. М.: Стандартинформ, 2010. 71 с.

ВНИМАНИЕ! Размотка кабеля электронасоса без выдержки в теплом помещении запрещена!

ВНИМАНИЕ! Упаковка концов кабеля является транспортировочной и не обеспечивает полную герметичность от влаги.

Электронасос должен храниться при отсутствии воздействия кислот, щелочей, бензина, растворителей и т. д.

ВНИМАНИЕ! Предохранять кабели электронасоса от повреждений! Запрещаются тянущие усилия на кабель во избежание появления скрытых дефектов в самом кабеле и в местах их соединения с электронасосом.

Концы кабеля должны быть всегда сухими и защищены от попадания влаги (ГОСТ 18690-2012 [17]).

Условия хранения электронасоса (в том числе в упаковке из гофрокартона) — 4 Ж 2 ГОСТ 15150-69 [3]. В зимний период температура хранения должна быть не ниже - 30°C .

ВНИМАНИЕ! В условиях хранения рабочее колесо электронасоса следует прокручивать от руки один раз в месяц для предотвращения «слипания» пар трения СТУ. Прокручивание рабочего колеса с отметкой в Таблицах Паспорта является обязательным.

В условиях хранения необходимо ежемесячно при прокрутке рабочего колеса проверять состояние консервации для обеспечения срока сохраняемости до ввода в эксплуатацию по ГОСТ 23216-78' [16].

Для постановки электронасоса на хранение после эксплуатации необходимо провести работы по сливу охлаждающей жидкости из рубашки охлаждения с полной просушкой внутренней полости рубашки (при наличии в конструкции рубашки охлаждения).

Срок сохраняемости электронасоса до ввода в эксплуатацию в законсервированном и упакованном состоянии -1 год. В условиях хранения электронасосов 1Л ГОСТ 15150-69 [3] срок сохраняемости электронасоса до ввода в эксплуатацию в законсервированном и упакованном состоянии – 3 года.

^{3.} ГОСТ 15150-69. Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды. М.: Стандартинформ, 2010. 71 с.

^{16.} ГОСТ 23216-78. Изделия электротехнические. Хранение, транспортирование, временная противокоррозионная защита, упаковка. Общие требования и методы испытаний. М.: Стандартинформ, 2008, 45с.

^{17.} ГОСТ 18690-2012. Кабели, провода, шнуры и кабельная арматура. Маркировка, упаковка, транспортирование и хранение. М.: Стандартинформ, 2014, 19 с.

^{3.} ГОСТ 15150-69. Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды. М.: Стандартинформ, 2010. 71 с.

По истечении срока сохраняемости перед вводом в эксплуатацию необходимо произвести обслуживание электронасоса в части замены всех резинотехнических изделий, торцовых уплотнений, масла.

Перед постановкой на промежуточное хранение в процессе эксплуатации электронасосы очистить от загрязнений, слить воду. Законсервировать и упаковать электронасос согласно ГОСТ 23216-78 [16].

Если требуемые условия транспортирования и хранения и сроки сохраняемости отличаются от указанных выше, то электронасосы поставляют для условий и сроков, устанавливаемых в договорах на поставки.

6. УТИЛИЗАЦИЯ

Конструкция электронасоса «Иртыш» разработана таким образом, что обеспечивается высокая степень ремонтопригодности. Практически в любом случае электронасос можно восстановить на заводе-изготовителе или в авторизованном сервисном центре до состояния нового электронасоса. Критерием предельного состояния будет являться экономическая нецелесообразность восстановления работоспособного состоянии - когда затраты на ремонт будут составлять значительную часть от стоимости нового электронасоса.

В случае непригодности электронасоса для использования его по назначению производится его утилизация. Решение об утилизации принимает эксплуатирующая организация с учетом рекомендаций завода-изготовителя на основании акта о дефектации электронасоса. Все изношенные узлы и детали сдаются в пункты приема вторсырья.

^{16.} ГОСТ 23216-78. Изделия электротехнические. Хранение, транспортирование, временная противокоррозионная защита, упаковка. Общие требования и методы испытаний. М.: Стандартинформ, 2008, 45с.

Адрес завода-изготовителя:

644013 г. Омск. ул. Завертяева, 36 ОДО «Предприятие «Взлёт»

Тел.: (3812) 601-114; 601-970; 601-157

8-800-101-37-02

Факс: (3812) 601-970; 602-030 E-mail: <u>vzlet@vzlet-omsk.ru</u>

kb@vzlet-omsk.ru

Сайт: http:/www.vzlet-omsk.ru

Адреса сервисных служб:

630039, г. Новосибирск ул. Панфиловцев, 68 «Сибирская насосная компания» Тел.:(3832) 67-03-36, 67-55-66

344113, г. Ростов-на-Дону ул. Орбитальная, 46 ООО «ЮгПромСнаб»

Тел.: 8 (800) 222-68-78 Бесплатно по РФ

603004, г. Н. Новгород ул. Фучика, 6а, оф. 23 ООО «ПТФ Энерго» Тел.:(8312) 57-75-06

650070, г. Кемерово ул. Тухачевского, 50/5, оф. 10 ООО "Взлёт-ГидроТех" E-mail:<u>vzlet-gidro@mail.ru</u> Тел. 8-983-224-23-18, 8-923-502-62-00

660060, г. Красноярск ул. Перенсона 59/1 ООО «ИК «Водоканалналадка» Е-mail: <u>vnalfdka@bk.ru</u> Тел. 8(391)206-85-33, 8(391)206-85-35 8(913)030-32-80, 8(391)280-32-80

Адрес офиса: 644043, г. Омск ул. Волочаевская, д. 15, корп. 1, кв. 4 Адрес производства: 644013, г. Омск Завертяева 36

ИП Корсуков Владимир Викторович

Тел.: 8-950-956-97-48

E-mail: m5@vvkorsukov.ru Сайт: http:\www.vvkorsukov.ru Приложение 1 - Проверка электрических параметров погружного насоса

приложение 1 - проверка электрических параметров погружного насоса								
Описание операции	Тип датчика	Прибор для измерения	Предел измерения	Обозначение выводных концов насоса	Нормальное значение	Примечание		
Проверка сопротивления обмоток статора		Омметр	200 Ом	Если три выводных конца "U", "V", "W".	 Не более 4% от среднего значения сопротивления трех замеров. Для обмоток соединенных в "Звезду". Не более 2% от среднего значения сопротивления трех замеров для обмоток соединенных в "Треугольник". 	Произвести измерение омметром между выводами: 1. "U" - "V", 2. "U" - "W", 3. "V" - "W". При наличии перекоса омического сопротивления более 4% от среднего значения сопротивления трех замеров. Для обмоток соединенных в "Звезду" более 2% от среднего значения сопротивления трех замеров для обмоток		
				Если шесть выводных концов то "U1", "V1", "W1", "U2", "V2", "W2"	Не более 4% от среднего значения сопротивления трех обмоток.	соединенных в "Треугольник". Насос не запускать! Необходимо сообщить заводу-изготовителю.		
Проверка сопротивления				Если три выводных конца то один из концов"U", "V", "W" и вывод "Ре"	в практически холодном состоянии - не менее 10 МОм (при эксплуатации, после остывания до температуры	Произвести измерение мегаомметром между выводами: "U" или "V" или "W" - "Pe" или корпус. В случае выявления низкого сопротивления изоляции насос не запускать! Необходимо сообщить заводу-изготовителю.		
изоляции обмоток статора относительно корпуса насоса	1	Мегаомметр	500 B	Если шесть выводных концов то один из концов "U1", "V1", "W1", "U2", "V2", "W2" и вывод "Pe" окружающей среды и нормальной влажности воздуха); при температуре, близкой к рабочей - не менее 3 МОм (при эксплуатации, в нагретом состоянии);	Произвести измерение мегаомметром между выводами "U1" или "U2" - "Pe" или корпус. Произвести измерение мегаомметром между выводами "V1" или "V2" - "Pe" или корпус. Произвести измерение мегаомметром между выводами "W1" или "W2" - "Pe" или корпус. В случае выявления низкого сопротивления изоляции хоть по одному из трех замеров, насос не запускать! Необходимо сообщить заводу-изготовителю.			
Проверка сопротивления цепи датчиков температуры	РТС термис- тор	Омметр	2кОм	"t" u "t"	от 120 Ом до 700 Ом.	Произвести измерение омметром между выводами "t" - "t". В случае выявления низкого или высокого сопротивления изоляции насос не запускать! Необходимо сообщить заводуизготовителю		

Продолжение приложения

Проверка сопротивления изоляции цепи датчиков температуры относительно корпуса насоса	РТС термис- тор	Мегаомметр	500 B	"t"u"Pe"	От 1 МОм до ∞.	Произвести измерение мегаомметром между выводами "t" - "Pe" или корпус. Замеры проводить при температуре 20 -25 градусов по Цельсию. Измерительное напряжение не должно превышать 500 В. В случае выявления низкого сопротивления насос не запускать! Необходимо сообщить заводу- изготовителю
Проверка сопротивления цепи датчика влажности насоса	Кондук- тометри- ческий	Омметр	200кОм	"Z" и "Pe"	100 кОм ±5%	Произвести измерение омметром между выводами "Z" - "Pe". Замеры проводить при температуре 20-25 градусов по Цельсию. Измерительное напряжение не должно превышать 7,5 В. В случае выявления низкого или высокого сопротивления насос не запускать! Необходимо сообщить заводу-изготовителю.

БИБЛИОГРАФИЯ

- 1. ГОСТ Р 56203-2014. Оборудование энергетическое тепло- и гидромеханическое. Шефмонтаж и Шефналадка. Общие требования. М.: Стандартинформ, 2015, 12с.
- 2. СНиП 3.05.06-85. Свод правил. Электротехнические устройства. М.: Стандартинформ, 2017. 73с.
- 3. ГОСТ 15150-69. Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды. М.: Стандартинформ, 2010. 71 с.
- 4. ГОСТ 6134-2007. Насосы динамические. Методы испытаний. М.: Стандартинформ, 2008. 100 с.
- 5. Правительство Российской Федерации. Постановление от 30 января 2021 г. №85. Об утверждении правил выдачи разрешений на допуск в эксплуатацию энергопринимающих установок потребителей электрической энергии, объектов по производству электрической энергии, объектов электросетевого хозяйства, объектов теплоснабжения теплопотребляющих установок и о внесении изменений в некоторые акты Правительства Российской Федерации.: утв. постановлением Правительства Российской Федерации от 30 января 2021 г. №85: в ред. постановления Правительства Российской Федерации от 22.10.2021 №1813, от 30.11.2021 № 2115.
- 6. ГОСТ 12.3.020-80. Система стандартов безопасности труда. Процессы перемещения грузов на предприятиях. Общие требования безопасности. М.: ИПК Издательство стандартов, 1980, 8с.
- 7. ГОСТ 31839-2012. Насосы и агрегаты насосные для перекачки жидкостей. Общие требования безопасности. М.: Стандартинформ, 2013, 26с.
- 8. ГОСТ Р МЭК 60204-1-2007. Безопасность машин. Электрооборудование машин и механизмов. М.: Стандартинформ, 2008, 93с.
- 9. СНиП III-Г.10.3-69. Строительные нормы и правила. Часть III, раздел Г. М.: Госстрой СССР, 1969, 17с.
- 1. 12.СНиП 12-03-2001. Безопасность труда в строительстве. Часть 1. Общие требования. М.: Госстрой России, 2001, 48с.
- 10. СНиП 12-04-2002. Безопасность труда в строительстве. Часть 2. Строительное производство. М.: Госстрой России, 2002, 35с.
- 11. СНиП 2.02.05-87. Фундаменты машин с динамическими нагрузками. М.: Госстрой СССР, 1988, 35с.
- 12. ГОСТ Р 54805-2011. Насосы центробежные. Технические требования. КЛАСС II М.: Стандартинформ, 2012, 48с.
- 13. СП 26.13330.2012. Фундаменты машин с динамическими нагрузками. М.: Минрегион России, 2011, 70с.
- 14. ГОСТ 982-80. Масла трансформаторные. Технические условия. М.: Стандартинформ, 2011, 6с.
- 15. ГОСТ 1805-76. Масло приборное МВП. Технические условия. М.: Стандартинформ, 2011, 4с.
- 16. ГОСТ 18375-73. Масло смазочное 132-08. Технические условия. М.: ИПК Издательство Стандартов, 1996, 16с.

- 17. ГОСТ 23216-78. Изделия электротехнические. Хранение, транспортирование, временная противокоррозионная защита, упаковка. Общие требования и методы испытаний. М.: Стандартинформ, 2008, 45с.
- 18. ГОСТ 18690-2012. Кабели, провода, шнуры и кабельная арматура. Маркировка, упаковка, транспортирование и хранение. М.: Стандартинформ, 2014, 19 с.

https://www.vzlet-omsk.ru/biblioteka-dokumentov QR —Ссылка на раздел БИБЛИОГРАФИЯ Раздел содержит нормативные документы, используемые в «Руководстве по эксплуатации»